Publication scientifique


Des nanocristaux pour créer des UV à partir du rayonnement solaire

Des physiciens et des chimistes ont mis au point des nanomatériaux capables d’additionner efficacement l’énergie de photons de différentes « couleurs » pour en faire des photons ultra-violets de plus haute énergie capables d’accélérer des réactions chimiques en stimulant l’effet photocatalytique.

Pour certains types de réactions chimiques, la lumière agit comme une source d’énergie qui, combinée à un photocatalyseur, permet de démultiplier leur efficacité. C’est le cas pour la photosynthèse mais aussi pour les réactions en œuvre dans les revêtements dépolluants – ou autonettoyants, ou encore pour de nombreuses synthèses industrielles. Ces réactions impliquent des matériaux photocatalytiques qui vont absorber la lumière. Souvent, seuls les UV, soit environ 1 % des photons reçus par la Terre, sont vraiment utilisés pour la réaction. Les recherches ont longtemps porté sur le développement de nouveaux matériaux qui puissent être efficaces sur des gammes de longueurs d’onde plus larges, mais n’ont pas permis de résoudre tous les problèmes rencontrés en terme de synthèse et d’efficacité. Depuis quelques années, une autre stratégie est explorée, qui vise à utiliser des matériaux capables de convertir des photons de faible énergie en photons de plus haute énergie. Ces matériaux, dits à « upconversion », connaissent un regain d’intérêt depuis le début des années 2000 avec la possibilité de les synthétiser sous forme nanométrique.

En étudiant en détail les phénomènes d’absorption, de transfert d’énergie et d’émission au sein de certains de ces matériaux, des physiciens et des chimistes de l’Institut lumière matière (ILM, CNRS/Univ. Lyon 1), en collaboration avec l’Institut de recherches sur l’environnement et la catalyse de Lyon (IRCELYON, CNRS/Univ. Lyon 1), ont montré qu’ils pouvaient servir de manière très efficace à additionner l’énergie des photons gaspillés pour générer des photons de plus haute énergie, utiles aux photocatalyseurs les plus classiques. Ces résultats sont publiés dans la revue ACS Photonics.


Lire la suite sur le site du CNRS.


© image : C. Dujardin (ILM, CNRS/Univ. Lyon 1)
Publié le 30 mars 2020 Mis à jour le 31 mars 2020